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Received 28 April 2000

Abstract. Electron and hole states are studied in quantum well wires (QWWs) with a rectangular
cross section. A theoretical approach is developed, within which the electronic properties of a single
QWW as well as of finite and infinite planar lattices of QWWs are analysed. It is demonstrated
that the ratio of effective masses in the well and in the barrier influences the dispersion law of the
electron motion along the QWW axis. A six-wire lattice is studied in detail. Edge states, which can
be observed in optical spectra, are revealed, when the barrier heights are different inside and outside
the lattice. The miniband structure is investigated for an infinite lattice of QWWs. The evolution
of electron states is analysed when the number of QWWs in the lattice increases: 1 → 6 → ∞.
The calculated electron–hole pair energies are in a good agreement with the experimental data on
photoluminescence in the Ga0.47In0.53As/InP QWW.

1. Introduction

Nowadays, the fabrication technology of semiconductor quantum well structures of nanometre
sizes is being developed. These structures will form the basis of the electronic devices of the
future. It has been proved that transistors and lasers made of quantum wires demonstrate
excellent characteristics [1]. Among all of these structures, quantum well wires (QWWs) have
attracted attention because of a combination of the confinement across a QWW and the free
motion of a charge carrier along the QWW axis.

Recently, QWWs of various cross sectional shapes have been fabricated and their physical
properties have been studied. QWWs with a triangular cross section have been obtained
using the technology of the selective growth on SiO2 patterned substrates [2]. Ultrafine
Si/SiO2 QWWs have been fabricated and their transport properties have been studied [3].
Cylindrical GaAs and CdSe QWWs have been formed in crysolite asbestos nanotubes and also
the crystallization of CdS in the channels of mica has been carried out [4], where nonlinear
optical transmission at discrete frequencies has been observed. The investigation of carrier
capture, relaxation, cooling and radiative recombination in the V-groove GaAs/Ga0.55Al0.45As
QWW has been presented in [5]. The optical properties of the V-groove and T-shaped
GaAs/AlxGa1−xAs QWWs have been investigated by observing photoluminescence (PL) and
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Figure 1. A schematic picture of a finite lattice. For instance, three quantum wires (dark grey),
edge barrier (light grey) and barrier region (white) are shown. The structure is covered (x > Lx/2)
by the same substance as its substrate (x < −Lx/2).

photoluminescence excitation (PLE) spectra, and the effect of lateral confinement on the
valence-band mixing has been studied in [6, 7]. The mixing in the conduction band of V-
and T-shaped QWWs has been studied in [8]. Strained V-shaped QWWs have been described
in [9] by means of the eight-band k ·p scheme. An impurity located at the axis of a cylindrical
QWW has also been studied [10, 11]. The binding energy of a hydrogenic impurity in a
cylindrical QWW has been calculated as a function of the location of the impurity with respect
to the axis of the QWW [12]. The effect of the shape of a cross section on the impurity binding
energies for a QWW has been investigated in [13]. A contribution of the polaron effect to the
impurity binding energy in a cylindrical QWW has been analysed in [14].

Considerable theoretical and experimental attention is devoted to QWWs with a
rectangular cross section. There is a simple cross-section anisotropy in these wires, which
can be described by only one parameter (the ratio of the rectangle sides). It is also convenient
to fabricate different lattices of such wires. Electron and hole states in GaAs/Ga1−xAlxAs
rectangular QWWs have been calculated in [15–17]. Magneto-phonon resonances [18] and
magneto-plasmons and edge-spin-density modes [19] have been investigated in these QWWs
using the simple parabolic potential well approximation. The binding energies of a hydrogenic
impurity arbitrarily located in a rectangular QWW have been calculated in [20, 21]. The
influence of the LO phonons confined to a rectangular QWW on the impurity ground-state
energy has been considered in [22].

The first rectangular QWWs were made of Ga0.47In0.53As [23, 24] or GaAs [25] for the
well and InP or Ga0.63Al0.37As, correspondingly, for the barrier. The height of the potential
barrier for an electron in both cases was about 250 meV. A detailed investigation of optical
properties of rectangular GaAs/AlAs QWWs has been carried out in [26] where the anisotropy
of PL and PLE spectra has been studied. Lateral quantum confinement effects in the rectangular
Ga0.47In0.53As/InP QWW have been examined [27] through PL experiments with and without
magnetic field. Strain effects in the rectangular InAs0.48P0.52/InP QWW have been investigated
in [28].

A few numerical methods have been suggested to solve the Schrödinger equation for
QWWs with a rectangular cross section and with a finite height of the barrier potential. In [15]
the eigenenergies in the rectangular GaAs/Ga0.63Al0.37As QWW have been calculated for an
electron and a hole using the finite-element method. In [16] calculations have been carried out
for the Ga0.47In0.53As/InP QWW expressing electron and hole wavefunctions in terms of a two-
dimensional Fourier series. In [17], hole energy levels in the rectangular GaAs/Ga0.8Al0.2As
QWW have been found using a variational method with the wavefunction written as a sum of
Gaussians.
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In order to find electron and hole quantum states in a system with an arbitrary number of
rectangular QWWs, we develop a method, which includes a considerable analytical phase. In
section 2 this method is applied for a single rectangular QWW and for a planar lattice with
a finite number of rectangular QWWs. Further, in section 3 a planar lattice with an infinite
number of QWWs is considered. The energy structure of an infinite lattice of QWWs is
investigated. Results of calculations for a single QWW, a finite lattice with six QWWs, and an
infinite lattice of QWWs are discussed in section 4. The obtained energy levels of an electron
and a hole in a single QWW are compared with those obtained theoretically earlier [15, 16] and
with experimental data [23, 24]. In a finite lattice of QWWs, we study in detail edge quantum
states with the wavefunctions localized at the lattice ends. Conclusions about main features of
the electron and hole quantum states in QWW lattices are given in section 5.

2. Single quantum wire and finite lattice

We consider the rectangular quantum wires layered out along one plane and parallel to each
other (see figure 1). The dimensions of the quantum wires are Lx and Ly along the x-axis and
the y-axis, respectively. The lengths of the quantum wires are supposed to be infinite. The
wavefunctions and the energy spectrum of this structure are determined from the Schrödinger
equation

− h̄
2

2
∇

(
1

m(r)
∇�(r)

)
+ V (r)�(r) = E�(r) (1)

where m(r) and V (r) are respectively the band mass and the barrier potential. Inside the
quantum wires V (r) = 0 and m(r) = mw. The height of the barrier potential and the band
mass are chosen to be in general different outside the lattice (V (r) = V0, m(r) = m0) and in
the spacings between the quantum wires (V (r) = Vb, m(r) = mb).

Since V (r) and m(r) do not depend on z, we can represent �(r) in (1) as

�(r) = exp(ikzz)�(x, y) (2)

i.e. a charge carrier travels freely along the z-axis with a wavenumber kz. Substituting (2)
in (1) gives the two-dimensional Schrödinger equation

− h̄
2

2
∇2

(
1

m(x, y)
∇2�(x, y)

)
+ V eff(x, y)�(x, y) = Etr�(x, y) (3)

where Etr = E − h̄2k2
z /2mw is referred to as the energy of the transverse (in the (x, y)-plane)

motion and

V eff(x, y) = V (x, y) +
h̄2k2

z

2

(
1

m(x, y)
− 1

mw

)
(4)

is the effective potential depending on kz due to the inhomogeneity of the structure. We
calculate the wavefunction�(x, y) separately in the region I (|x| � Lx/2) and in the region II
(|x| > Lx/2). In each of these regions, the barrier potential and the band mass may be functions
of variable y only:

V eff(x, y) ≡ VI(y) m(x, y) ≡ m(y) |x| � Lx/2

V eff(x, y) ≡ VII m(x, y) ≡ mb |x| > Lx/2. (5)

Consequently, we can use the following expansions for the wavefunction:

�I(x, y) =
∑
k

Akϕk(y)Fk(x), (6)

�II(x, y) =
∑
κ

Bκ�κ(y)fκ(x) (7)
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where �I and �II denote the wavefunction in regions I and II, respectively. It is worth noting
that V eff(x, y) and m(x, y) are symmetrical functions with respect to both the coordinates,
i.e. they do not change when x → −x or y → −y. Hence, a solution of (3) is either a
symmetrical or antisymmetrical function of x and y. Hereafter, we introduce two indices i and
j for the functions F ik (x), f

i
κ (x), ϕ

j

k (y),�
j
κ(y) and for the coefficients Aijk and Bijκ to indicate

the symmetry of the quantum state (i, j = s for a symmetrical function and i, j = a for a
antisymmetrical one).

For further calculations it is convenient to impose an auxiliary condition on the
wavefunction �(x,±R) = 0, which, according to (6) and (7), results in the conditions
ϕ
j

k (±R) = 0 and �jκ(±R) = 0. The parameter R is chosen to be much larger than the
size of the structure. We have found that for a GaAs/Ga0.63Al0.37As structure withN quantum
wires, it is enough to take 2R = NL + 6L and a choice of higher values of R does not change
the results of calculations considerably. If we assume, for example, 2R = NL + 7L then,
even for energy levels that lie only 0.01Vb below the barrier edge, the corresponding energy
differences are of the order of a few per cent.

The solution of (3) is divided into three steps. (i) We determine the functions ϕjk (y)
and �jκ(y) with the corresponding quantum numbers k and κ . (ii) We find F ik (x) and f iκ (x).
(iii) We require the continuity of the wavefunction �(x, y) and its derivative divided by the
band mass at the boundary lines between the regions I and II (|x| = Lx/2), in order to obtain
equations for the coefficients Aijk and Bijκ and a secular equation for the energy Etr .

(i) Inserting the expansion (6) into (3), we find that terms depending on the x and y
coordinates can be separated. Hence, equation (3) can be split into two parts, which correspond
to one-dimensional equations for F ik (x) and ϕjk (y). Thus, ϕjk (y) are the eigenfunctions of the
one-dimensional equation

− h̄
2

2

d

dy

1

m(y)

dϕjk (y)

dy
+

(
VI(y)− Etr +

mw

m(y)
Etr

)
ϕ
j

k (y) = h̄2k2

2m(y)
ϕ
j

k (y). (8)

The solution of this equation depends on the number of the quantum wires in the lattice. It can
be solved analytically for an arbitrary number of QWWs in the lattice. Indeed, dividing the
interval (−R,R) into segments where the band mass is constant, one can easily find a solution
of (8) in each of those segments. Then, satisfying the condition ϕjk (±R) = 0 and requiring the
continuity of the function ϕjk (y) and of its derivative divided by the band mass, one obtains a
secular equation for quantum numbers k. We have considered two cases: a single QWW and
a lattice with six QWWs. For a single quantum wire, the symmetrical solution is

ϕsk(y) =



cos(ky) |y| � Ly/2

cos

(
k
Ly

2

)
sinh(qk(R − |y|))

sinh(qk(R − Ly/2)) Ly/2 < |y| � R
(9)

where quantum numbers k are defined from the secular equation

qk coth(qk(R − Ly/2)) = mb

mw
k tan(kLy/2). (10)

The antisymmetrical solution is

ϕak (y) =



sin(ky) |y| � Ly/2

sign(y) sin

(
k
Ly

2

)
sinh(qk(R − |y|))

sinh(qk(R − Ly/2)) Ly/2 < |y| � R
(11)

with the corresponding secular equation

qk coth(qk(R − Ly/2)) = −mb
mw
k cot(kLy/2). (12)
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Here q2
k = −k2 + 2mwE/h̄2 + 2mb(Vb − E)/h̄2, sign(t) is the sign function. The parameter

qk can acquire either real or imaginary values.
Similarly, substituting the expansion (7) into (3), we obtain the one-dimensional equation

for �jκ(y)

− h̄2

2mb

d2�
j
κ(y)

dy2
− h̄2κ2

2mb
�jκ(y) = 0. (13)

The solutions of this equation can be immediately written down as

�sκ(y) = 1√
R

cos(κy) �aκ(y) = 1√
R

sin(κy) (14)

where the quantum number κ is found from the condition �jκ(±R) = 0. The sets of
eigenfunctions ϕjk (y) and �jκ(y) are complete. However, during our calculations we restrict
the summation in the expansions (6) and (7) to a sufficient (in order to provide a given accuracy)
number of terms, which is the same for both expansions.

(ii) Inserting expressions (6) and (7) into equation (3) again yields the one-dimensional
equations for functions F ik (x) and f iκ (x):

− h̄2

2mw

d2F ik (x)

dx2
+
h̄2k2

2mw
F ik (x) = EtrF ik (x) (15)

− h̄2

2mb

d2f iκ (x)

dx2
+
h̄2κ2

2mb
f iκ (x) = (Etr − VII)f

i
κ (x). (16)

The general solutions of these equations are

F sk (x) = θ

(
Etr − h̄2k2

2mw

)
cos(νkx) + θ

(
h̄2k2

2mw
− Etr

)
cosh(νkx)

F ak (x) = θ

(
Etr − h̄2k2

2mw

)
sin(νkx) + θ

(
h̄2k2

2mw
− Etr

)
sinh(νkx) (17)

f sκ (x) = exp

(
ξκ

(
Lx

2
− |x|

))
f aκ (x) = sign(x) exp

(
ξκ

(
Lx

2
− |x|

))
(18)

where

νk =
√∣∣∣∣−k2 +

2mwEtr

h̄2

∣∣∣∣ ξκ =
√
κ2 +

2mb(VII − Etr)

h̄2

and θ(t) is the Heaviside step function. In (18), the requirement fκ(±∞) = 0 is fulfilled.
(iii) Since the wavefunction�(x, y) is either a symmetrical or an antisymmetrical function

with respect to x, it is enough to require the continuity conditions for �(x, y) and for its
derivative divided by the band mass at the boundary x = Lx/2. Using the fact that the
functions �jκ(y) are orthonormalized, these boundary conditions result in

Bijκ =
∑
k

d
j

kκA
ij

k F
i
k (Lx/2) − ξκBijκ = −

∑
k

D
j

kκA
ij

k F
i
k

′
(Lx/2) (19)

where F ik
′
(x) is the derivative of the function F ik (x), and

d
j

kκ =
∫ R

−R
�jκ(y)ϕ

j

k (y) dy D
j

kκ =
∫ R

−R

mb

m(y)
�jκ(y)ϕ

j

k (y) dy.

Eliminating Bijκ from (19) leads to a set of linear homogeneous algebraic equations for Aijk .
This set has a non-trivial solution only if its determinant is equal to zero. Writing down the
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determinant, we get the secular equation for the energy Etr . Determining the energy spectrum
from the secular equation, we then calculate coefficients Aijk and Bijκ from (19). Finally, a
substitution of Aijk and Bijκ , respectively, in the expansions (6) and (7) gives the wavefunction
�(x, y).

In our calculations the sum over k is restricted to k < kmax, where kmax is defined from the
condition h̄2k2

max/2mw = 4Vb. We have found that this restriction allows us to calculate the
complete discrete energy spectrum (Etr < Vb) with a good accuracy regardless of the number
of the quantum wiresN . Taking 5Vb instead of 4Vb in previous equality, we obtain a correction
to the energy spectrum of less than 1%. It should be noted, that unlike kmax, the number of
terms in the expansions (6) and (7) rises with increasingN , due to the aforementioned relation
2R = NL + 6L. In a single GaAs/Ga0.63Al0.37As quantum wire, according to the above
presented equalities for R and kmax, it is sufficient to take 20 terms in (6) and (7), in order to
calculate all 10 discrete energy levels. In a lattice with six QWWs (the period L = 15 nm) the
number of terms is taken to be 40, in order to find all 60 discrete energy levels.

3. Infinite lattice

In this section we consider an infinite lattice of rectangular quantum wires. The method already
described for the single quantum wire and for a finite lattice cannot be applied straightforwardly
for the infinite lattice, because of infinite number of terms with k < kmax in (6) and (7).
Therefore, we use the expansions for �(x, y) similar to those of (6) and (7) with the x and y
coordinates transposed with respect to each other. In these expansions ϕk(x) and �κ(x) are
the functions (defined by (9), (11) and (14)) of a single wire extended along the x-axis.

In the case of an infinite lattice, the effective barrier potential V eff(x, y) and the band
mass m(x, y) are periodic functions of the y coordinate, i.e. V eff(x, y + L) = V eff(x, y) and
m(x, y+L) = m(x, y). Hence, due to the translation symmetry of the system, the wavefunction
�(x, y) obeys the relation [29]

�(x, y + L) = exp(ikyL)�(x, y) (20)

where ky is a quantum number satisfying the inequalities −π/L � ky � π/L. It is worth
noting that ky can be interpreted as a quasi-wavenumber of the motion of an electron or a hole
along the y-axis.

The solution of the Schrödinger equation (3), which satisfies the relation (20), and which
is defined within the period |y| � L/2, has the form

�(x, y) =




∑
κ

�κ(x)[B
∗
κ g(y − Ly/2 + L)

−Bκg(y + Ly/2)e
−ikyL] −L/2 � y < −Ly/2∑

k

ϕk(x)[A
s
kF

s
k (y) + iAakF

a
k (y)] |y| � Ly/2∑

κ

�κ(x)[B
∗
κ g(y − Ly/2) eikyL

−Bκg(y + Ly/2 − L)] Ly/2 < y � L/2

(21)

where

g(t) = sinh(ξκ t)

sinh(ξκ(L− Ly))
F ik (y) and ξκ were defined in the previous section; B∗

κ is a complex conjugated value of Bκ . In
a general case, the coefficients Bκ as well as the wavefunction �(x, y) have complex values,
while the coefficients Ask and Aak get real values, as shown below.
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Figure 2. Energy shift in photoluminescence spectra versus the width Lx of the rectangular
Ga0.47In0.53As/ InP quantum wire (Ly = 5 nm). The energy shift is calculated with respect to the
photoluminescence spectrum of the Ga0.47In0.53As slab of thickness 5 nm.

Requiring the continuity of the wavefunction �(x, y) together with its derivative divided
by the band mass at the lines y = −Ly/2 and y = Ly/2 we obtain the following set of linear
algebraic equations for the coefficients Ask , A

a
k and Bκ :

ReBκ =
∑
k

dkκA
s
kF

s
k (Ly/2) ImBκ =

∑
k

dkκA
a
kF

a
k (Ly/2)

ξκ
ReBκ(cosh(ξκ(L− Ly))− cos(kyL))− ImBκ sin(kyL)

sinh(ξκ(L− Ly)) =
∑
k

DkκA
s
kF

s
k

′
(Ly/2)

ξκ
ReBκ sin(kyL)− ImBκ(cosh(ξκ(L− Ly)) + cos(kyL))

sinh(ξκ(L− Ly)) =
∑
k

DkκA
a
kF

a
k

′
(Ly/2) (22)

where ReBκ and ImBκ are the real and imaginary parts ofBκ . On the basis of (22), substituting
ReBκ and ImBκ from the first two equations into the last two, we obtain a set of linear
homogeneous algebraic equations for Ask and Aak . Notice, that the equations for Ask and Aak
contain real terms only, and hence the coefficients Ask and Aak are real, too. Equating the
determinant of the obtained set of equations to zero, we get a secular equation for the energy
Etr . Solving this secular equation, we find the energy Etr(ky) as a function of ky . Then,
after calculating the coefficients Ask , A

a
k and Bκ from (22), we can find the wavefunction

�ky (x, y) for certain ky using expressions (21). If Ask and Aak form a solution for a quantum
state with a quasi-wavenumber ky , then Ask and −Aak are a solution for a quantum state with
a quasi-wavenumber −ky , due to the invariance of (22) with respect to the simultaneous
substitutions ky → −ky and Aak → −Aak . On the other hand, these substitutions are
equivalent to the replacement �ky (x, y) → �∗

ky
(x, y). Therefore, the wavefunction obeys

the property �−ky (x, y) ≡ �∗
ky
(x, y). All terms of the Schrödinger equation (3) are real,

hence�ky (x, y) and�∗
ky
(x, y) satisfy the Schrödinger equation with the same energy Etr(ky).

Consequently, the quantum states with quasi-wavenumbers ky and −ky have the same energy,
i.e. Etr(ky) = Etr(−ky).
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Figure 3. Wavefunctions of four quantum states (l = 1, . . . , 4) for an electron in the
GaAs/Ga0.63Al0.37As single quantum wire with the dimensions Lx = 20 nm and Ly = 10 nm.
Etr

1 = 42.270 meV; Etr
2 = 73.079 meV; Etr

3 = 123.86 meV; Etr
4 = 135.22 meV.

4. Results of calculation and discussion

In order to justify the accuracy of the method, first of all we carry out the calculations for
the single rectangular GaAs/Ga0.63Al0.37As and Ga0.47In0.53As/InP quantum wires. For those
QWWs the lowest energy levels were found in [15] and [16], respectively. The material
parameters have the following values for the GaAs/Ga0.63Al0.37As structure [16]

• conduction electron: mw = 0.0665me, mb = 0.0858me, Vb = 276 meV
• light hole: mw = 0.0905me, mb = 0.1107me, Vb = 184 meV
• heavy hole: mw = 0.3774me, mb = 0.3865me, Vb = 184 meV

and for the Ga0.47In0.53As/InP structure [16]

• conduction electron: mw = 0.042me, mb = 0.079me, Vb = 240 meV
• heavy hole: mw = 0.47me, mb = 0.61me, Vb = 370.6 meV.

Our analytical calculation reproduces the values of the lowest eigenenergies obtained
in [15, 16]. Also we find the energy shift in the Ga0.47In0.53As/InP quantum wire with respect to
a Ga0.47In0.53As slab of the same thickness. For the calculations we take Ly = 5 nm, while Lx
is varied from 5 to 50 nm. In figure 2 the results of these calculations are plotted together with
experimental data from [23, 24]. Comparing our theoretical results with experiments of [23, 24]
we should point out a considerable scatter in experimental data. This could be the result of
geometrical and compositional inhomogeneities of the wire, which grow with weakening
confinement. The results of measurements are considerably altered even for different samples
(see figure 2, the first PL peaks for two samples are marked as empty and full triangles). Taking
this into account, the agreement of the experimental and theoretical data can be stated as good
for the ground-state energy and fair for the first excited state. Having checked the accuracy of
our method, we carried out the following calculations.
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)nm( 1-

z
k

)nm( 1-

z
k

Figure 4. Energy of the transverse motion (left-hand panel) and full energy (right-hand panel) of
an electron in a single QWW versus the wavenumber kz. A dashed curve indicates the effective
potential V eff . The curves for energy are broken off as Etr(kz) becomes higher than V eff .

(1) For the single rectangular GaAs/Ga0.63Al0.37As quantum wire with dimensions Lx =
20 nm andLy = 10 nm, all ten discrete energy levelsEtr

l (l = 1, . . . , 10) and the corresponding
wavefunctions�l(x, y) are calculated. In figure 3 the wavefunctions (kz = 0) of the four lowest
quantum states are plotted as 3D-graphs. The bold curve in these graphs is a projection of
the quantum wire border on the surface. It can be seen from figure 3 that the higher quantum
states penetrate into the barrier region more strongly than the lower ones. As shown below,
the penetration substantially influences the miniband width of an infinite lattice.

The wavefunctions �l(x, y) with l = 1, . . . , 7 and 10 have a rather simple structure and
can be classified by introducing quantum numbersnx andny , which indicate the number of half-
waves along the x- and y-axes, respectively. Using such a classification, we can indicate the
following pairs of (nx, ny): (1, 1); (2, 1); (3, 1); (1, 2); (2, 2); (4, 1); (3, 2) for the quantum
states with l = 1 to 7, correspondingly, and nx = 4, ny = 2 for the state with l = 10.
The remaining wavefunctions �8(x, y) and �9(x, y) cannot be classified in this way. If one
increases the height of the barrier Vb, the discrete quantum states of a single quantum wire tend
to the well known quantum states (nx, ny) in a rectangular quantum wire with infinite height
of the barrier. In such a limit, the quantum states with l = 8 and 9 tend to the quantum states
with nx = 1, ny = 3 and nx = 5, ny = 1, respectively.

(2) In figure 4 the energies Etr
l (l = 1, . . . , 10) are plotted as a function of kz. If the

band masses in the quantum wire and in the barrier were the same, then the total energy
E would depend on kz as a parabolic function and the energy Etr

l would be a constant. In
figure 4, we emphasize a deviation of the above energies from the parabolic dependence due to
different band masses (mb > mw), while the electron’s dispersion law in the well and barrier
materials is parabolic. As kz increases, the height of the effective potential V eff decreases in
this case. Hence, when the energy Etr

l is close to the height of the effective potential, this
deviation becomes significant. For higher quantum states, the deviation from the parabolic
dependence becomes appreciable at smaller values of kz as compared with those for lower
quantum states. The diminishing ofEtr

l with increasing kz can be explained by the penetration
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Figure 5. Penetration of the ground-state wavefunction into the barrier region for an electron
moving along the quantum wire axis. Etr

1 (0) = E1(0) = 42.27 meV;Etr
1 (1.4 nm−1) = 16.46 meV,

E1(1.4 nm−1) = 1140 meV.

of the wavefunction in the barrier region, where the band mass is heavier than that inside
the quantum wire. Consequently, the penetration of the wavefunction in the barrier is deeper
for higher kz (see figure 5). So, due to a deep penetration of the wavefunction �4(x, y)

(nx = 1, ny = 2) in the barrier in comparison with that of �3(x, y) (nx = 3, ny = 1), at large
kz ≈ 1.1 nm−1 the energy level E4 becomes lower than E3.

(3) Next we consider results of calculations for the lattice with six rectangular quantum
wires. The quantum wires are arranged in one plane and parallel to each other. In the plane the
width is Lx = 20 nm and the period is L = 15 nm. The thickness of a QWW is Ly = 10 nm.
Three specific cases with the edge barrier potentials V0 = Vb, 2Vb and Vb/2 are investigated
in detail for quantum states with kz = 0. Hereafter we take m0 = mb.

Each quantum state of a single quantum wire transforms into six quantum states in the
lattice with six QWWs. This process can be imagined as a split of a six-fold degenerate energy
level into six energy levels of the lattice. If one increases the distance between the quantum
wires L − Ly to infinity, the value of this split tends to zero, and the wavefunction in each
quantum wire coincides with the wavefunction �single

l of a single quantum wire. Therefore,
we can classify the quantum states in a finite lattice by two quantum numbers l and p, where
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Figure 6. Electron wavefunctions (l = 1, p = 1, 3, 5) in the finite lattice with six quantum wires
(V0 = Vb). Etr

11 = 41.622 meV; Etr
13 = 42.101 meV; Etr

15 = 42.712 meV.

l corresponds to the quantum number of the energy level in a single quantum wire (taking the
limitL−Ly → ∞) and p labels the energy levels with the same l. For a fixed l, three quantum
states with p = 1, 3, 5 have symmetrical wavefunctions along the y-axis, while another three
quantum states p = 2, 4, 6 have antisymmetrical wavefunctions. Here we represent only the
quantum states with symmetrical wavefunctions.

First, we discuss the case V0 = Vb, for which the contour plots of the electron
wavefunctions with l = 1 and p = 1, 3, 5 are shown in figure 6. A modulation of the
wavefunction �single

l is seen to occur along the y-axis. Therefore, the wavefunction of a

quantum state in the lattice can be approximately written as a product �lp = fp�
single
l of

an envelope function fp and of the wavefunction �single
l in a single quantum wire. For the

wavefunction �11, the envelope function has a maximum in the middle (y = 0) of the lattice
and monotonously decreases along the positive and negative directions of the y-axis. The
wavefunctions �13 and �15 are modulated by the envelope functions with three and five half-
waves along the y-axis.

A variation of the barrier height V0 at the lattice edges substantially changes the
wavefunctions of an electron or a hole in the finite lattice. For two particular cases V0 = 2Vb
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Figure 7. Electron wavefunctions (l = 1, p = 1, 3, 5) in the finite lattice with six quantum wires
(V0 = 2Vb). Etr

11 = 41.673 meV; Etr
13 = 42.437 meV; Etr

15 = 44.810 meV.

and Vb/2, the electron wavefunctions (l = 1, p = 1, 3, 5) are represented in figures 7 and 8,
respectively. In figure 7 the wavefunctions with p = 1 and 3 have a similar shape to those for
V0 = Vb, but they are expelled from the lattice edges. On the contrary, the wavefunction with
p = 5 is strongly localized near the outermost wires and penetrates into the lattice only by a
length of one period. Hereafter, we refer to them as to edge quantum states. The same effect
happens for the case V0 = Vb/2 (figure 8), where the wavefunction with p = 1 is localized
near the lattice edges, while the wavefunctions withp = 3, 5 are appreciable in the middle four
QWWs only. The wavefunctions of the edge quantum states for the case V0 < Vb penetrate
deeper in the barrier than those for V0 > Vb. In the case V0 = Vb/2, the edge quantum state
possesses the lowest energy E11, while in the opposite case V0 = 2Vb the highest energy level
E15 corresponds to the edge quantum state. It should be noted that the same picture can be
seen for the antisymmetrical quantum states. The antisymmetrical wavefunctions with indices
p = 2 and p = 6 correspond to the edge quantum states in the cases V0 < Vb and V0 > Vb,
respectively.

(4) The dependence of the electron energy levels (l = 1, p = 1, . . . , 6) on the height of
the edge barrier V0 is plotted in figure 9. When V0 = Vb, all six energy levels lie inside the first
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Figure 8. Electron wavefunctions (l = 1, p = 1, 3, 5) in the finite lattice with six quantum wires
(V0 = Vb/2). Etr

11 = 39.078 meV; Etr
13 = 41.697 meV; Etr

15 = 42.506 meV.

miniband of an infinite lattice (the miniband energy structure of an infinite lattice is discussed
below). If one increases the ratio V0/Vb, the two highest energy levels, which correspond
to the symmetrical and antisymmetrical edge quantum states, go up off the miniband. In the
opposite case of small ratiosV0/Vb < 1, the two lowest energy levels go down off the miniband
edge. In both cases, the two energy levels of the edge quantum states become very close to
each other. The rest of the four energy levels always lie inside the miniband. It is worth
mentioning that, due to such a degeneracy of the energy levels of the edge quantum states, a
linear combination of the corresponding symmetrical and antisymmetrical wavefunctions is
an approximate solution of the Schrödinger equation (3). Consequently, we can construct the
wavefunctions, which are localized only at one edge of the lattice as�l± = (�l5 ±�l6)/

√
2 for

V0 > Vb and�l± = (�l1 ±�l2)/
√

2 for V0 < Vb. One of the wavefunctions�l± corresponds
to the edge quantum state in a semi-infinite lattice (a lattice with an infinite number of QWWs
and one edge).

(5) Similarly to a superlattice, the infinite lattice of QWWs has a miniband energy structure.
Each miniband with the energyEl(ky) originates from the energy levelEl of a single quantum
wire. In figure 10 the miniband energy El(ky) is shown for the infinite lattice with the period
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Figure 9. Energy levels (l = 1, p = 1, . . . , 6) of an electron in the finite lattice with six quantum
wires versus the edge barrier potential V0.

L = 15 nm. The infinite lattice consists of the rectangular quantum wires with the dimensions
Lx = 20 nm and Ly = 10 nm. Corresponding to ten discrete energy levels in a single
quantum wire, the infinite lattice has 10 minibands. The wavenumber ky is restricted to the
interval −π/L � ky � π/L, since the energy El(ky) is a periodic function of ky with the
period 2π/L. The formation of a miniband can be imagined as a splitting of an infinitely
degenerate energy level of a single quantum wire. It is important to note, that an energy level
of a single QWW lies exactly in the middle of the corresponding miniband. In the minibands
l = 1, 2, 3, 6, 8, 9, the energy El(ky) has a minimum at ky = 0, while in the minibands
l = 4, 5, 7, 10 at ky = 0, El(ky) is maximal. The quantum states l = 1, 2, 3, 6 in a single
quantum wire are classified by the quantum number ny = 1, and, correspondingly, the quantum
states l = 4, 5, 7, 10 have ny = 2. Since the quantum states with ny = 2 penetrate into the
barrier deeper than the quantum states with ny = 1, the corresponding minibands labelled by
l = 4, 5, 7, 10 are wider than those with l = 1, 2, 3, 6.

In a general case, the wavefunction of an electron or a hole in an infinite lattice acquires
complex values. According to (20), in an infinite lattice the wavefunction is exactly represented
as a product of the envelope function eikyy and a wavefunction of a single quantum wire.

5. Conclusions

A theoretical method is developed, which allows an insight to be obtained into the electronic
properties of a single quantum well wire with a rectangular cross section, as well as of the finite
and infinite planar lattices of such wires. Using this method, the electron and hole discrete
energy levels are calculated and the obtained electron–hole pair energies are found to be in
good agreement with the experimental data. The dependence of the electron energyE(kz) and
the wavefunction on the wavenumber kz was investigated. Due to different band masses inside
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Figure 10. Energy minibands of an electron in an infinite lattice (kz = 0).

and outside the quantum wire (mb > mw), the electron wavefunction penetrates deeper into
the barrier as the wavenumber kz rises, and, consequently, E(kz) is a non-parabolic function
of kz. In this way, the ratio of effective masses in the well and in the barrier influences the
electron transport along the QWW axis.

The energy levels and the wavefunctions of the electron quantum states in the finite lattice
of six QWWs were investigated. The quantum states in a finite lattice are formed from those of
a single quantum wire. Therefore, the energy spectrum of a finite lattice can be interpreted as
a split of the energy levels of a single QWW. Consequently, the wavefunction in each quantum
wire is modulated by an envelope function along the entire lattice. When the height of the
external potential barrier differs from that of the internal one (which is between the quantum
wires), the edge quantum states occur. The wavefunction of an edge quantum state is localized
near the lattice edges, while the wavefunctions of the rest quantum states are expelled from
the edges. Each energy level of the edge quantum states has a very close neighbour, which is
characterized by the opposite parity with respect to inversion of the lattice axis.

The energy spectrum of an infinite lattice has a miniband structure. Each miniband
corresponds to a discrete energy level in a single quantum wire.
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